• u******* 加入了本站
  • 游客 下载了资源 LED 灯月亮灯 001 [高分辨率] 3d打印图纸stl文件
  • 游客 下载了资源 LED 灯月亮灯 001 [高分辨率] 3d打印图纸stl文件
  • 游客 购买了资源 国开学习网电大《☆电子商务法律与法规》形考任务四答案
  • 游客 下载了资源 国开电大《Flash动画制作》形考课程考核成品答案实训5:补间动画
  • 游客 购买了资源 国开电大《Flash动画制作》形考课程考核成品答案实训5:补间动画
  • 游客 下载了资源 国开电大《Flash动画制作》形考课程考核成品答案实训4:引导层和遮罩层的应用
  • 游客 购买了资源 国开电大《Flash动画制作》形考课程考核成品答案实训4:引导层和遮罩层的应用
  • 游客 下载了资源 国开电大《Flash动画制作》形考课程考核成品答案实训3:元件和库应用
  • 游客 下载了资源 国开电大《Flash动画制作》形考课程考核成品答案实训3:元件和库应用

2020年各科中考真题2020年四川省遂宁市中考数学试题(教师版含解析)

四川省遂宁市2020年中考数学试题

一.选择题(共10小题)

1.-5的相反数是( )

A. -5 B. 5 C. D.

【答案】B

【解析】

【分析】

只有符号不同的两个数叫做互为相反数,据此即可得答案.

【详解】∵只有符号不同的两个数叫做互为相反数,

∴-5的相反数是5,

故选:B.

【点睛】本题考查了相反数的定义,只有符号不同的两个数叫做互为相反数;熟练掌握定义是解题关键.

2.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为(  )

A. 8.23×10﹣6 B. 8.23×10﹣7 C. 8.23×106 D. 8.23×107

【答案】B

【解析】

分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.

详解:0.000000823=8.23×10-7

故选B.

点睛:本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.

3.下列计算正确的是(  )

A. 7ab﹣5a=2b B. (a+)2a2+

C. (﹣3a2b)2=6a4b2 D. 3a2b÷b=3a2

【答案】D

【解析】

【分析】

根据合并同类项、完全平方公式、积的乘方、单项式除单项式分别进行计算,再判断即可.

【详解】7ab与﹣5a不是同类项,不能合并,因此选项A不正确;

根据完全平方公式可得(a+)2=a2++2,因此选项B不正确;

(﹣3a2b)2=9a4b2,因此选项C不正确;

3a2b÷b=3a2,因此选项D正确;

故选:D

【点睛】本题考查了合并同类项、完全平方公式、积的乘方、单项式除单项式,掌握运算法则是正确计算的前提.

4.下列图形中,既是中心对称图形又是轴对称图形的是( )

A. 等边三角形 B. 平行四边形 C. 矩形 D. 正五边形

【答案】C

【解析】

分析:根据轴对称图形与中心对称图形的概念求解.

详解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误;

B、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.是中心对称图形.故错误;

C、是轴对称图形,又是中心对称图形.故正确;

D、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误.

故选C.

点睛:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.

5.函数y=中,自变量x的取值范围是(  )

A. x>﹣2 B. x≥﹣2 C. x>﹣2且x≠1 D. x≥﹣2且x≠1

【答案】D

【解析】

【分析】

根据二次根式的性质和分式的意义,被开方数大于等于0,分母不为0,列不等式组可求得自变量x的取值范围.

【详解】根据题意得:,

解得:x≥﹣2且x≠1.

故选:D

【点睛】本题考查了函数自变量取值范围的求法.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.

6.关于x的分式方程﹣=1有增根,则m的值(  )

A. m=2 B. m=1 C. m=3 D. m=﹣3

【答案】D

【解析】

【分析】

分式方程去分母转化为整式方程,由分式方程有增根,确定出m的值即可.

【详解】解:去分母得:m+3=x﹣2,

由分式方程有增根,得到x﹣2=0,即x=2,

x=2代入整式方程得:m+3=0,

解得:m=﹣3,

故选:D

【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.

7.如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则的值为(  )

A. B. C. D.

【答案】C

【解析】

【分析】

AF=2DF,可以假设DFk,则AF=2kAD=3k,证明ABAF=2kDFDGk,再利用平行线分线段成比例定理即可解决问题.

【详解】解:由AF=2DF,可以假设DFk,则AF=2kAD=3k

∵四边形ABCD平行四边形,

ADBCABCDABCD

∴∠AFB=∠FBC=∠DFG,∠ABF=∠G

BE平分∠ABC

∴∠ABF=∠CBG

∴∠ABF=∠AFB=∠DFG=∠G

ABCD=2kDFDGk

CGCD+DG=3k

ABDG

∴△ABE∽△CGE

∴,

故选:C

【点睛】本题考查了比例的性质、相似三角形的判定及性质、等腰三角形的性质、角平分线的性质、平行四边形的性质、平行线分线段成比例定理,熟练掌握性质及定理是解题的关键.

8.二次函数yax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=﹣1,下列结论不正确的是(  )

A. b2>4ac B. abc>0

C. ac<0 D. am2+bmab(m任意实数)

【答案】C

【解析】

【分析】

根据二次函数的图象与系数的关系即可求出答案.

【详解】解:由图象可得:a>0,c>0,△=b2﹣4ac>0,﹣=﹣1,

b=2a>0,b2>4ac,故A选项不合题意,

abc>0,故B选项不合题意,

x=﹣1时,y<0,

ab+c<0,

∴﹣a+c<0,即ac>0,故C选项符合题意,

xm时,yam2+bm+c

x=﹣1时,y有最小值为ab+c

am2+bm+cab+c

am2+bmab,故D选项不合题意,

故选:C

【点睛】本题考查二次函数的图象和性质,结合图形确定a,b,c的符号和它们之间的关系是解题的关键.

9.如图,在Rt△ABC中,∠C=90°,ACBC,点OAB上,经过点A的⊙OBC相切于点D,交AB于点E,若CD=,则图中阴影部分面积为(  )

A. 4﹣ B. 2﹣ C. 2﹣π D. 1﹣

【答案】B

【解析】

【分析】

连接ODOHACH,如图,根据切线的性质得到ODBC,则四边形ODCH为矩形,所以OHCD=,则OAOH=2,接着计算出∠BOD=45°,BDOD=2,然后利用扇形的面积公式,利用图中阴影部分面积=SOBDS扇形DOE进行计算.

【详解】解:连接OD,过OOHACH,如图,

∵∠C=90°,ACBC

∴∠B=∠CAB=45°,

∵⊙OBC相切于点D

ODBC

∴四边形ODCH为矩形,

OHCD=,

在Rt△OAH中,∠OAH=45°,

OAOH=2,

在Rt△OBD中,∵∠B=45°,

∴∠BOD=45°,BDOD=2,

∴图中阴影部分面积=SOBDS扇形DOE

=0.5×2×2﹣

=2﹣π.

故选:B

【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了扇形面积的计算.

10.如图,在正方形ABCD中,点E是边BC的中点,连接AEDE,分别交BDAC于点PQ,过点PPFAECB的延长线于F,下列结论:

①∠AED+∠EAC+∠EDB=90°,

APFP

AEAO

④若四边形OPEQ的面积为4,则该正方形ABCD的面积为36,

CEEFEQDE

其中正确的结论有(  )

A. 5个 B. 4个 C. 3个 D. 2个

【答案】B

【解析】

【分析】

①正确:证明∠EOB=∠EOC=45°,再利用三角形的外角的性质即可得出答案;

②正确:利用四点共圆证明∠AFP=∠ABP=45°即可;

③正确:设BE=EC=a,求出AE,OA即可解决问题;

④错误:通过计算正方形ABCD的面积为48;

⑤正确:利用相似三角形的性质证明即可.

【详解】①正确:如图,连接OE,

∵四边形ABCD是正方形,

∴AC⊥BD,OA=OC=OB=OD,

∴∠BOC=90°,

∵BE=EC,

∴∠EOB=∠EOC=45°,

∵∠EOB=∠EDB+∠OED,∠EOC=∠EAC+∠AEO,

∴∠AED+∠EAC+∠EDO=∠EAC+∠AEO+∠OED+∠EDB=90°,故①正确;

②正确:如图,连接AF,

∵PF⊥AE,

∴∠APF=∠ABF=90°,

∴A,P,B,F四点共圆,

∴∠AFP=∠ABP=45°,

∴∠PAF=∠PFA=45°,

∴PA=PF,故②正确;

③正确:设BE=EC=a,则AE=a,OA=OC=OB=OD=a,

∴,即AE=AO,故③正确;

④错误:根据对称性可知,,

∴==2,

∵OB=OD,BE=EC,

∴CD=2OE,OE⊥CD,

∴ , ,

∴, ,

∴,

∴,故④错误;

⑤正确:∵∠EPF=∠DCE=90°,∠PEF=∠DEC,

∴,

∴,

∴EQ=PE,

∴CE•EF=EQ•DE,故⑤正确;

综上所诉一共有4个正确,故选:B.

【点睛】本题主要考查了三角形外角性质、四点共圆问题、全等与相似三角形的综合运用,熟练掌握相关概念与方法是解题关键.

二.填空题(共5小题)

11.下列各数3.1415926,,1.212212221…,,2﹣π,﹣2020,中,无理数的个数有_____个.

【答案】3

【解析】

【分析】

根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的绝大部分数,找出无理数的个数.

【详解】解:在所列实数中,无理数有1.212212221…,2﹣π,这3个,

故答案为:3.

【点睛】本题考查无理数定义,熟练掌握无理数的概念是解题的关键.

12.一列数4、5、4、6、x、5、7、3中,其中众数是4,则x的值是_____.

【答案】4

【解析】

【分析】

众数是一组数据中出现次数最多的数,根据众数的定义求出这组数的众数即可.

【详解】解:根据众数定义就可以得到:x=4,

故答案为:4.

【点睛】本题考查了众数的定义,掌握知识点是解题关键.

13.已知一个正多边形的内角和为1440°,则它的一个外角的度数为_____度.

【答案】36

【解析】

【分析】

首先设此正多边形为n边形,根据题意得:180°(n﹣2)=1440°,即可求得n=10,再由多边形的外角和等于360°,即可求得答案.

【详解】设此多边形为n边形,

根据题意得:180°(n﹣2)=1440°,

解得:n=10,

∴这个正多边形的每一个外角等于:360°÷10=36°.

故答案为:36.

【点睛】本题主要考查多边形的内角与外角,熟练掌握定义与相关方法是解题关键.

14.若关于x的不等式组有且只有三个整数解,则m的取值范围是______.

【答案】1<m≤4

【解析】

【分析】

解不等式组得出其解集为﹣2<x<,根据不等式组有且只有三个整数解得出1<≤2,解之可得答案.

【详解】解不等式,得:x>﹣2,

解不等式2xm≤2﹣x,得:x<,

则不等式组的解集为﹣2<x<,

∵不等式组有且只有三个整数解,

∴1<≤2,

解得:1<m≤4,

故答案为:1<m≤4.

【点睛】本题考查了不等式组的整数解,关键是根据不等式组的整数解求出取值范围,用到的知识点是一元一次不等式的解法.

15.如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a1,第2幅图中“▱”的个数为a2,第3幅图中“▱”的个数为a3,…,以此类推,若+++…+=.(n为正整数),则n的值为_____.

【答案】4039

【解析】

【分析】

先根据已知图形得出ann(n+1),代入到方程中,再将左边利用裂项化简,解分式方程可得答案.

【详解】解:由图形知a1=1×2,a2=2×3,a3=3×4,

ann(n+1),

∵+++…+=,

∴+++…+=,

∴2×(1﹣+﹣+﹣+……+﹣)=,

∴2×(1﹣)=,

1﹣=,

解得n=4039,

经检验:n=4039是分式方程的解.

故答案为:4039.

【点睛】本题主要考查图形的变化规律,根据已知图形得出ann(n+1)及是解题的关键.

三.解答题(共10小题)

16.计算:﹣2sin30°﹣|1﹣|+()﹣2﹣(π﹣2020)0

【答案】+3

【解析】

【分析】

先化简二次根式、代入三角函数值、去绝对值符号、计算负整数指数幂和零指数幂,再计算乘法,最后计算加减可得.

【详解】﹣2sin30°﹣|1﹣|+()﹣2﹣(π﹣2020)0

=2﹣2×﹣(﹣1)+4﹣1

=2﹣1﹣+1+4﹣1

=+3.

【点睛】本题考查了实数的运算,解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算以及熟记特殊角的三角函数值.

17.先化简,(﹣x﹣2)÷,然后从﹣2≤x≤2范围内选取一个合适的整数作为x的值代入求值.

【答案】﹣x+3,2

【解析】

【分析】

先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.

【详解】解:原式=×

=

=

=

=﹣(x-3)

=﹣x+3

x≠ ±2,

∴可取x=1,

则原式=﹣1+3=2.

【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.

18.如图,在△ABC中,ABAC,点DE分别是线段BCAD的中点,过点ABC的平行线交BE的延长线于点F,连接CF

(1)求证:△BDE≌△FAE

(2)求证:四边形ADCF为矩形.

【答案】(1)见解析;(2)见解析

【解析】

【分析】

(1)首先根据平行线的性质得到∠AFE=∠DBE,再根据线段中点的定义得到AE=DE,根据全等三角形的判定定理即可得到结论;

(2)根据全等三角形的性质得到AF=BD,推出四边形ADCF是平行四边形,根据等腰三角形的性质得到∠ADC=90°,于是得到结论.

【详解】(1)证明:∵AF∥BC,

∴∠AFE=∠DBE,

∵E是线段AD的中点,

∴AE=DE,

∵∠AEF=∠DEB,

∴(AAS);

(2)证明:∵,

∴AF=BD,

∵D是线段BC的中点,

∴BD=CD,

∴AF=CD,

∵AF∥CD,

∴四边形ADCF是平行四边形,

∵AB=AC,

∴,

∴∠ADC=90°,

∴四边形ADCF为矩形.

【点睛】本题主要考查了全等三角形的证明与矩形证明,熟练掌握相关概念是解题关键.

19.在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1、2号楼进行测高实践,如图为实践时绘制的截面图.无人机从地面点B垂直起飞到达点A处,测得1号楼顶部E的俯角为67°,测得2号楼顶部F的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且ECFD分别垂直地面于点CD,点BCD的中点,求2号楼的高度.(结果精确到0.1)(参考数据sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)

【答案】45.8米

【解析】

【分析】

通过作辅助线,构造直角三角形,利用直角三角形的边角关系,分别求出EMAN,进而计算出2号楼的高度DF即可.

【详解】解:过点EF分别作EMABFNAB,垂足分别为MN

由题意得,EC=20,∠AEM=67°,∠AFN=40°,CBDBEMFNAB=60,

AMABMB=60﹣20=40,

在Rt△AEM中,

∵tan∠AEM=,

EM==≈16.9,

在Rt△AFN中,

∵tan∠AFN=,

AN=tan40°×16.9≈14.2,

FDNBABAN=60﹣14.2=45.8,

答:2号楼的高度约为45.8米.

【点睛】本题考查了解直角三角形的应用,构造直角三角形是解题关键.

20.新学期开始时,某校九年级一班的同学为了增添教室绿色文化,打造温馨舒适的学习环境,准备到一家植物种植基地购买AB两种花苗.据了解,购买A种花苗3盆,B种花苗5盆,则需210元;购买A种花苗4盆,B种花苗10盆,则需380元.

(1)求AB两种花苗的单价分别是多少元?

(2)经九年级一班班委会商定,决定购买AB两种花苗共12盆进行搭配装扮教室.种植基地销售人员为了支持本次活动,为该班同学提供以下优惠:购买几盆B种花苗,B种花苗每盆就降价几元,请你为九年级一班的同学预算一下,本次购买至少准备多少钱?最多准备多少钱?

【答案】(1)AB两种花苗的单价分别是20元和30元;(2)本次购买至少准备240元,最多准备290元

【解析】

【分析】

(1)设AB两种花苗的单价分别是x元和y元,则,即可求解;

(2)设购买B花苗x盆,则购买A花苗为(12﹣x)盆,设总费用为w元,由题意得:w=20(12﹣x)+(30﹣x)x=﹣x2+10x+240(0≤x≤12),即可求解.

【详解】解:(1)设AB两种花苗的单价分别是x元和y元,则,解得,

答:AB两种花苗的单价分别是20元和30元;

(2)设购买B花苗x盆,则购买A花苗为(12﹣x)盆,设总费用为w元,

由题意得:w=20(12﹣x)+(30﹣x)x=﹣x2+10x+240(0≤x≤12),

∵-1<0.故w有最大值,当x=5时,w的最大值为265,当x=12时,w的最小值为216,

故本次购买至少准备216元,最多准备265元.

【点睛】本题考查二次函数的实际应用,根据题意准确找到等量关系,建立函数模型是解题的关键.

21.阅读以下材料,并解决相应问题:

小明在课外学习时遇到这样一个问题:

定义:如果二次函数ya1x2+b1x+c1(a1≠0,a1b1c1是常数)与ya2x2+b2x+c2(a2≠0,a2b2c2是常数)满足a1+a2=0,b1b2c1+c2=0,则这两个函数互为“旋转函数”.求函数y=2x2﹣3x+1的旋转函数,小明是这样思考的,由函数y=2x2﹣3x+1可知,a1=2,b1=﹣3,c1=1,根据a1+a2=0,b1b2c1+c2=0,求出a2b2c2就能确定这个函数的旋转函数.

请思考小明的方法解决下面问题:

(1)写出函数yx2﹣4x+3的旋转函数.

(2)若函数y=5x2+(m﹣1)x+ny=﹣5x2nx﹣3互为旋转函数,求(m+n)2020的值.

(3)已知函数y=2(x﹣1)(x+3)的图象与x轴交于AB两点,与y轴交于点C,点ABC关于原点的对称点分别是A1B1C1,试求证:经过点A1B1C1的二次函数与y=2(x﹣1)(x+3)互为“旋转函数”.

【答案】(1)y=﹣x2﹣4x﹣3;(2)1;(3)见解析

【解析】

【分析】

(1)由二次函数的解析式可得出a1b1c1的值,结合“旋转函数”的定义可求出a2b2c2的值,此问得解;

(2)由函数y=5x2+(m﹣1)x+ny=﹣5x2nx﹣3互为“旋转函数”,可求出mn的值,将其代入(m+n)2020即可求出结论;

(3)利用二次函数图象上点的坐标特征可求出点ABC的坐标,结合对称的性质可求出点A1B1C1的坐标,由点A1B1C1的坐标,利用交点式可求出过点A1B1C1的二次函数解析式,由两函数的解析式可找出a1b1c1a2b2c2的值,再由a1+a2=0,b1b2c1+c2=0可证出经过点A1B1C1的二次函数与函数y=2(x﹣1)(x+3)互为“旋转函数”.

【详解】解:(1)由yx2﹣4x+3函数可知,a1=1,b1=﹣4,c1=3,

a1+a2=0,b1b2c1+c2=0,

a2=﹣1,b2=﹣4,c2=﹣3,

∴函数yx2﹣4x+3的“旋转函数”为y=﹣x2﹣4x﹣3;

(2)∵y=5x2+(m﹣1)x+ny=﹣5x2nx﹣3互为“旋转函数”,

∴,

解得:,

∴(m+n)2020=(﹣2+3)2020=1.

(3)证明:当x=0时,y=2(x﹣1)(x+3)=﹣6,

∴点C的坐标为(0,﹣6).

y=0时,2(x﹣1)(x+3)=0,

解得:x1=1,x2=﹣3,

∴点A的坐标为(1,0),点B的坐标为(﹣3,0).

∵点ABC关于原点的对称点分别是A1B1C1

A1(﹣1,0),B1(3,0),C1(0,6).

设过点A1B1C1的二次函数解析式为ya(x+1)(x﹣3),

C1(0,6)代入ya(x+1)(x﹣3),得:6=﹣3a

解得:a=﹣2,

过点A1B1C1的二次函数解析式为y=﹣2(x+1)(x﹣3),即y=﹣2x2+4x+6.

y=2(x﹣1)(x+3)=2x2+4x﹣6,

a1=2,b1=4,c1=﹣6,a2=﹣2,b2=4,c2=6,

a1+a2=2+(﹣2)=0,b1b2=4,c1+c2=6+(﹣6)=0,

∴经过点A1B1C1的二次函数与函数y=2(x﹣1)(x+3)互为“旋转函数”.

【点睛】本题考查了二次函数图象上点的坐标特征、对称的性质及待定系数法求二次函数的解析式,准确理解题干中“旋转函数”的定义是解题的关键.

22.端午节是中国的传统节日.今年端午节前夕,遂宁市某食品厂抽样调查了河东某居民区市民对ABCD四种不同口味粽子样品的喜爱情况,并将调查情况绘制成如图两幅不完整统计图:

(1)本次参加抽样调查的居民有   人.

(2)喜欢C种口味粽子的人数所占圆心角为   度.根据题中信息补全条形统计图.

(3)若该居民小区有6000人,请你估计爱吃D种粽子的有   人.

(4)若有外型完全相同的ABCD棕子各一个,煮熟后,小李吃了两个,请用列表或画树状图的方法求他第二个吃的粽子恰好是A种粽子的概率.

【答案】(1)600;(2)72,图见解析;(3)2400人;(4画图见解析,

【解析】

【分析】

(1)用喜欢D种口味粽子的人数除以它所占的百分比得到调查的总人数;

(2)先计算出喜欢B种口味粽子的人数,再计算出喜欢C种口味粽子的人数,则用360度乘以喜欢C种口味粽子的人数所占的百分比得到它在扇形统计图中所占圆心角的度数,然后补全条形统计图;

(3)用D占的百分比乘以6000即可得到结果;

(4)画树状图展示所有12种等可能的结果数,找出他第二个吃的粽子恰好是A种粽子的结果数,然后根据概率公式求解.

【详解】解:(1)240÷40%=600(人),

所以本次参加抽样调查的居民有600人;

故答案为:600;

(2)喜欢B种口味粽子的人数为600×10%=60(人),

喜欢C种口味粽子的人数为600﹣180﹣60﹣240=120(人),

所以喜欢C种口味粽子的人数所占圆心角的度数为360°×=72°;

补全条形统计图为:

故答案为:72;

(3)6000×40%=2400,

所以估计爱吃D种粽子的有2400人;

故答案为2400;

(4)画树状图为:

共有12种等可能的结果数,其中他第二个吃的粽子恰好是A种粽子的结果数为3,

所以他第二个吃的粽子恰好是A种粽子的概率==.

【点睛】本题考查条形统计图和扇形统计图的信息关联、由样本估计总体以及用列表或画树状图求简单事件的概率.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(4)中需注意是不放回实验.

23.如图,在平面直角坐标系中,已知点A的坐标为(0,2),点B的坐标为(1,0),连结AB,以AB为边在第一象限内作正方形ABCD,直线BD交双曲线y═(k≠0)于DE两点,连结CE,交x轴于点F

(1)求双曲线y=(k≠0)和直线DE的解析式.

(2)求的面积.

【答案】(1)y=,y=3x﹣3;(2)

【解析】

【分析】

(1)作DMy轴于M,通过证得(AAS),求得D的坐标,然后根据待定系数法即可求得双曲线y=(k≠0)和直线DE的解析式.

(2)解析式联立求得E的坐标,然后根据勾股定理求得DEDB,进而求得CN的长,即可根据三角形面积公式求得△DEC的面积.

【详解】解:∵点A的坐标为(0,2),点B的坐标为(1,0),

OA=2,OB=1,

DMy轴于M

∵四边形ABCD是正方形,

∴∠BAD=90°,ABAD

∴∠OAB+∠DAM=90°,

∵∠OAB+∠ABO=90°,

∴∠DAM=∠ABO

在和中

∴(AAS),

AMOB=1,DMOA=2,

D(2,3),

∵双曲线经过D点,

k=2×3=6,

∴双曲线为y=,

设直线DE的解析式为ymx+n

B(1,0),D(2,3)代入得,

解得,

∴直线DE的解析式为y=3x﹣3;

(2)连接AC,交BDN

∵四边形ABCD是正方形,

BD垂直平分ACACBD

得或,

经检验:两组解都符合题意,

E(﹣1,﹣6),

B(1,0),D(2,3),

DE==,DB==,

CNBD=,

【点睛】

本题考查的是正方形的性质,三角形全等的判定与性质,利用待定系数法求解一次函数与反比例函数的解析式,函数的交点坐标的求解,化为一元二次方程的分式方程的解法,勾股定理的应用,掌握以上知识是解题的关键.

24.如图,在Rt△ABC中,∠ACB=90°,DAB边上的一点,以AD为直径的⊙OBC于点E,交AC于点F,过点CCGABAB于点G,交AE于点H,过点E的弦EPAB于点Q(EP不是直径),点Q为弦EP的中点,连结BPBP恰好为⊙O的切线.

(1)求证:BC是⊙O的切线.

(2)求证:=.

(3)若sin∠ABC═,AC=15,求四边形CHQE的面积.

【答案】(1)见解析;(2)见解析;(3)45

【解析】

【分析】

(1)连接OEOP,根据线段垂直平分线的性质得到PBBE,根据全等三角形的性质得到∠BEO=∠BPO,根据切线的判定和性质定理即可得到结论.

(2)根据平行线和等腰三角形性质即可得到结论.

(3)根据垂径定理得到EPAB,根据平行线和等腰三角形的性质得到∠CAE=∠EAO,根据全等三角形的性质得到CEQE,推出四边形CHQE是菱形,解直角三角形得到CG==12,根据勾股定理即可得到结论.

【详解】(1)证明:连接OEOP

PEAB,点Q为弦EP的中点,

AB垂直平分EP

PBBE

OEOPOBOB

∴△BEO≌△BPO(SSS),

∴∠BEO=∠BPO

BP为⊙O的切线,

∴∠BPO=90°,

∴∠BEO=90°,

OEBC

BC是⊙O的切线.

(2)解:∵∠BEO=∠ACB=90°,

ACOE

∴∠CAE=∠OEA

OAOE

∴∠EAO=∠AEO

∴∠CAE=∠EAO

∴.

(3)解:∵AD为的⊙O直径,点Q为弦EP的中点,

EPAB

CGAB

CGEP

∵∠ACB=∠BEO=90°,

ACOE

∴∠CAE=∠AEO

OAOE

∴∠EAQ=∠AEO

∴∠CAE=∠EAO

∵∠ACE=∠AQE=90°,AEAE

∴△ACE≌△AQE(AAS),

CEQE

∵∠AEC+∠CAE=∠EAQ+∠AHG=90°,

∴∠CEH=∠AHG

∵∠AHG=∠CHE

∴∠CHE=∠CEH

CHCE

CHEQ

∴四边形CHQE是平行四边形,

CHCE

∴四边形CHQE是菱形,

∵sin∠ABC═sin∠ACG═=,

AC=15,

AG=9,

CG==12,

∵△ACE≌△AQE

AQAC=15,

QG=6,

HQ2HG2+QG2

HQ2=(12﹣HQ)2+62

解得:HQ=,

CHHQ=,

∴四边形CHQE的面积=CHGQ=×6=45.

【点睛】此题考查了圆的综合问题,用到的知识点是全等三角形的判定与性质、菱形的判定和性质、勾股定理以及解直角三角形等知识,此题综合性很强,难度较大,注意数形结合思想应用.

25.如图,抛物线yax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.

(1)求抛物线的解析式.

(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BEAD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.

(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使ADPQ为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.

【答案】(1)y=x2﹣8x+6;(2)点E(2,2)或(3,4);(3)存在,当点P坐标为(5,16)或(﹣1,16)或(3,0)时,使ADPQ为顶点的四边形为平行四边形

【解析】

【分析】

(1)设抛物线解析式为:ya(x﹣1)(x﹣3),把点C坐标代入解析式,可求解;

(2)先求出点M,点N坐标,利用待定系数法可求AD解析式,联立方程组可求点D坐标,可求SABD=×2×6=6,设点E(m,2m﹣2),分两种情况讨论,利用三角形面积公式可求解;

(3)分两种情况讨论,利用平行四边形性质可求解.

【详解】解:(1)∵抛物线yax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),

∴设抛物线解析式为:ya(x﹣1)(x﹣3),

∵抛物线ya(x﹣1)(x﹣3)(a≠0)的图象经过点C(0,6),

∴6=a(0﹣1)(0﹣3),

a=2,

∴抛物线解析式为:y=2(x﹣1)(x﹣3)=2x2﹣8x+6;

(2)∵y=2x2﹣8x+6=2(x﹣2)2﹣2,

∴顶点M的坐标为(2,﹣2),

∵抛物线的顶点M与对称轴l上的点N关于x轴对称,

∴点N(2,2),

设直线AN解析式为:ykx+b

由题意可得:,

解得:,

∴直线AN解析式为:y=2x﹣2,

联立方程组得:,

解得:,,

∴点D(4,6),

SABD=×2×6=6,

设点E(m,2m﹣2),

∵直线BE将△ABD的面积分为1:2两部分,

SABESABD=2或SABESABD=4,

∴×2×(2m﹣2)=2或×2×(2m﹣2)=4,

m=2或3,

∴点E(2,2)或(3,4);

(3)若AD为平行四边形的边,

∵以ADPQ为顶点的四边形为平行四边形,

ADPQ

xDxAxPxQxDxAxQxP

xP=4﹣1+2=5或xP=2﹣4+1=﹣1,

∴点P坐标为(5,16)或(﹣1,16);

AD为平行四边形的对角线,

∵以ADPQ为顶点的四边形为平行四边形,

ADPQ互相平分,

∴,

xP=3,

∴点P坐标为(3,0),

综上所述:当点P坐标为(5,16)或(﹣1,16)或(3,0)时,使ADPQ为顶点的四边形为平行四边形.

【点睛】本题是二次函数综合题,考查了待定系数法求解析式,一次函数的性质,平行四边形的性质,利用分类讨论思想解决问题是本题的关键.

 

资源下载
下载价格1
点点赞赏,手留余香 给TA打赏

AI创作

评论0

请先
支持多种货币
支持多种货币付款,满足您的付款需求
7天无忧退换
安心无忧购物,售后有保障
专业客服服务
百名资深客服7*24h在线服务
发货超时赔付
交易成功极速发货,专业水准保证时效性
显示验证码

社交账号快速登录

微信扫一扫关注
扫码关注后会自动登录